Instruments List

Rheosense e-VROC™ VISCOMETER — EXTENSIONAL VISCOSITY

e-VROC™ VISCOMETER — EXTENSIONAL VISCOSITY

 

 

 

 

 

 

 

e-VROC™, the viscometer capable of measuring apparent extensional viscosity, measures the extensional flow of polymer solutions to help you understand and optimize your industrial processes. By monitoring the sample flow through a microfluidic contraction within the measuring cell, e-VROC™ provides precise apparent extensional viscosity data.

 

Because extensional flows greatly impact the behavior of polymer molecules and asymmetric particles, understanding extensional viscosity allows you to improve your industrial processes.  With accurate data, you can gain a deep understanding of the composition of the fluid, predict the impact of that composition on your process, and optimize your process based on the characteristics revealed by the data.

e-VROC™, built with Rheosense's patented VROC® technology, is an excellent tool for measuring both the extensional and shear viscosities simultaneously.

The viscometer measures the pressure upstream and downstream of a contraction using the MEMS pressure sensors, and it registers changes in the flow. The fluid undergoes an almost constant extension through the contraction/expansion, enabling the calculation of the apparent extensional viscosity.

 

The e-VROC™ chip is engineered with a microfluid channel of uniform width and depth. It has hyperbolic contraction/expansion zone in the middle of the channel and four monolithically integrated MEMS pressure sensors (two in the upstream and two in the downstream of the contraction/expansion zone). A liquid entering the channel first experiences shear flow in the straight channel and then experiences a uniform extension in the contraction zone as illustrated by the elongational shape change of the square in the schematic below.

Compared to other methods of extensional viscosity measurement, e-VROC™ allows the measurement of extensional viscosity at high extensional rates. The system measures the pressure upstream and downstream of a contraction using the MEMS pressure sensors, and it registers changes in the flow. The fluid undergoes an almost constant extension through the contraction/expansion, enabling the calculation of the extensional viscosity.

e-VROC™ is a good choice for the measurement of fluids with certain extensional viscosity properties, such as polymer applications, which exhibit thickening beyond the Trouton ratio found for Newtonian fluids.

Applications include:

Fiber Spinning
Paint Rolling
Roll Coating
Inkjet Printing
Spraying
Electrospinning
Enhanced Oil Recovery
Drag Reduction
Food Processing

 

 

e-VROC™ provides extensional viscosity data based on monitoring the sample flow through a microfluidic contraction within the cell. By measuring the pressure upstream and downstream of a contraction using the MEMS pressure sensors, the change in the flow is registered.

With the same automated temperature and shear rate sweep capabilities as m-VROC™, e-VROC™ will provide extensional viscosity measurements within a minute!

 

 

Minimum Sample Volume – 500 µL

Wide Dynamic Viscosity Range: 1.0 ~ 2,000 mPas

Temperature specification of 4°C – 70°C

Extensional Rate: 0.1 ~ 1,000 s-1

No Evaporation – No Air-Liquid Interface

Characterization of Newtonian and Non-Newtonian Solutions

Accuracy up to 2% of Reading

Repeatable Measurement up to 0.5% of Reading

 




Produktgruppe

Pharmaceutical

Environmental

Clinical/Forensic

Food Safety

Instruments

Viscometer

Kontakt

Biolab A/S
Sindalsvej 29
8240 Risskkov
Telefon: 86 21 28 66
E-mail: sales@biolab.dk